NOVEL SEPARATION PROCESSES

(Professional Elective-IV)

Course Code: 15CH1133 L T P C 3 0 0 3

Course Outcomes:

At the end of the Course, the Student will be able to:

- CO 1 Define and classify the membranes. Illustrate the synthesis and describe the different characterization procedures of membranes.
- CO 2 Classify and illustrate the pressure driven and electrically driven membrane processes.
- CO 3 Classify and illustrate the concentration driven membrane processes.
- CO 4 Explain the separation by adsorption and select suitable adsorbent for recovery of solute and solve the related problems.
- CO 5 Explain the treatment of process liquids by ion exchange process and it's applications.

UNIT-I (15 Lectures)

INTRODUCTION:

Separation processes, membrane processes, definition of a membrane, classification of membrane processes and membrane modules.

PREPARATION OF SYNTHETIC MEMBRANES:

Types of Membrane materials, phase inversion membranes, preparation technique for immersion precipitation, preparation technique for composite membranes.

CHARACTERIZATION OF MEMBRANES:

Introduction, membrane characterization, characterization of porous membranes, characterization of non-porous membranes.

UNIT-II (10 Lectures)

MEMBRANE PROCESSES:

Introduction, pressure driven membrane processes: Introduction, microfiltration: Introduction, membranes for microfiltration, industrial applications, ultrafiltration: membranes for ultrafiltration, industrial applications, reverse osmosis and nanofiltration: membranes for reverse osmosis and nanofiltration, industrial applications.

ELECTRICALLY DRIVEN PROCESSES:

Introduction, electrodialysis, Process parameters, membranes for electrodialysis, applications, Membrane electrolysis, Bipolar membranes, Fuel Cells.

UNIT-III (8 Lectures)

CONCENTRATION DRIVEN MEMBRANE PROCESSES:

Gas separation: Membranes for gas separation, applications, pervaporation: membranes for pervaporation, applications, dialysis: membranes for dialysis, applications, liquid membranes: aspects, liquid membrane development, choice of the organic solvent and carrier, applications.

UNIT-IV (10 Lectures)

NEW SEPARATION TECHNIQUES:

Reactive Distillation, Reactive extraction, Reactive absorption, Reactive crystallization, drying (infrared, solar) Pressure swing and vacuum swing adsorption, Regeneration with purge.

UNIT-V (7 Lectures)

ION EXCHANGE:

Basics of Ion exchange, Ion exchange resins, Binary ion exchange equilibrium, Ion movement theory, Applications, Applications without exchange: Ion exclusion, Mass transfer in ion exchange systems.

TEXT BOOKS:

- Marcel Mulder, "Basic Principles of Membrane Technology",
 2nd Edition, Springer Publications, 2007
- 2. Wankat, P. C. "Rate- Controlled Separations", Springer, 1994.

REFERENCES:

- 1. Nunes. S.P, Peinemann, K.V, "Membrane Technology in the chemical industry", 2nd Edition,
- 2. Rautanbach and Albrecht. R., "Membrane Process", John Wiley and Sons.1989.
- 3. Crespo. J.G., Bodekes, K.W., "Membrane Processes in separation and Purification", Kluwer Academic Publications, Netherland, 1994.
- 4. Geankoplis. C.J. "Transport processes and Unit Operations", 4th Edition, PHI, New Delhi, 2006.